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MONTE CARLQO ANALYSIS OF INACCURACIES IN ESTIMATED
AIRCRAFT PARAMETERS CAUSED BY UNMODELED
FLIGHT INSTRUMENTATION ERRORS

By Ward F. Hodge and Wayne H. Bryant
Langley Research Center |

SUMMARY

An output error estimation algorithm was used to evaluate the effects of both static
and dynamic instrumentation errors on the estimation of aircraft stability and control
parameters. A Monte Carlo analysis, using simulated cruise flight data, was performed
for a high-performance military aircraft, a large commercial transport, and a small
general aviation aireraft. The effects of variations in the information content of the
flight data, resulting from two different choices of control input maneuvers, were also
determined,

The results indicate that unmodeled instrumentation errors can cause inaccuracies
in the estimated parameters which are comparable to their nominal values. However,
the corresponding perturbations to the estimated output response trajectories and
characteristic equation pole locations appear to be relatively small. The magnitudes of
these perturbations, for both longitudinal and lateral response modes, can vary appre-
ciably with different classes of aircraft and with the information content of the flight data
used. The most significant of the instrumentation errors evaluated were found to be the
white noise and lag in the elevator position, the bias and lag in the aileron position, and
the lags in the pitch and roll acceleration measurements. The perturbations they produce
are much larger than those arigsing from the combined effects of static errors and white
noise in the output response measurements,

INTRODUCTION

One of the important tasks associated with current efforts to improve the accuracy
of estimating stability and control derivatives from flight data is to evaluate the effects
of unmodeled errors in the measurements. Largely because less stringent accuracy
.requirements and marginal computational facilities formerly existed, suitable error-
analysis algorithms for this purpose have appeared only recently. Two such algorithms,
based on the minimization of output response errors, are described in reference 1. The



first approach furnishes stafistics of the resulting parameter inaccuracies through the
use of sensitivity coefficients in an ensemble technique, and the second provides this
nformation by means of 3 Monte Carlo analysis of simulated flight data,

Reference 1 also reports an initial application of the ensemble algorithm where the
effects of static errors (such as biases, scale factors, misalinements, center of gravity
uncertainty, and vane corrections) were analyzed, assuming typical instrumentation and
cruise flight conditions. The results, together with those presented in reference 2, indi-
cated that these error sources can cause much larger parameter inaccuracies than those
attributed to white noise in the output response measurements alone.

The results contained in reference 3 and this report extend the overall investigation
in several respects. A principal cobjective of fthese studies was to evaluate the effects
of additional error sources such as those arising from instrumentation dynamics and
measurements of control inputs, The simulated data algorithm was used for this purpose,
since these errors cannot be handled by the ensemble algorithm without introducing
approximations which have not yet been evaluated. As stability and control derivatives are
- often estimated from flight data obtained for other purposes that may not require full
excitation of the aireraft response modes, results were generated to examine the effects
of varying the information content of the measurements. Similar data were obtained to
determine further how much the results change with different classes of aircraft. In
order to provide a more complete evaluation, the effects of parameter inaccuracies
{caused by unmodeled instrumentation errors) on the output response trajectories and
characteristic equation pole locations were also determined. Lastly, a sensitivity anal-
ysis was performed to identify the dominant error sources.

SYMBOLS
B measurements bias vector
¥,G aircraft dynamics system matrices {eq. (4))
g acceleration due to gravity, m/s2
H,D response measurements system matrices (eq. (30
J estimation algorithm performance function (eq. (1)}
M number of Monte Carlo runs



p,q,r

p,a.r

u,w

number of data samples

number of rows or columns

body-axis components of aircraft linear acceleration, g units

null vector or matrix {eqs. {4) and (10))

parameter vector

roll, pitch, and yaw rates about body axes, respectively, rad/s or deg/s

roll, pitch, and yaw acceleration about body axes, respectively, rad/s2 or
deg/s2

covariance matrix of white measurement noise (eq. {17))
characteristic equation root (eq. (23))

matrix of scale factor, crosscoupling, and misalinement errors
time, s

control input vector

body-axis components of aircraft linear velocity, m/s
unperturbed nominal airspeed, m/s (table II)

white measurement noise vector

aircraft state vector

output response vector

angle of attack, rad or deg

angle of sideslip, rad or deg
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Subscripts:

ax,ay,az

nx,ny,nz

diagonal matrix of instrumentation time constants (eqs. {15) and {19))
elevator, aileron, and rudder deflections, respectively, deg

elements of T matrices (eqs. (12), (13), (14), and (17))

damping factor

standard deviation

time constant, s (table I)

roll and pitch attitude angles about body axes, respectively, rad or deg

natural frequency

body-axis components of accelerometer position relative to center of gravity
control input

Dutch roll

final value

indicated value

discrete time sample indices, or matrix or vector elements

lagged value

measured value

linear accelerometers

initial or unperturbed value

roll subsidence



5 spiral divergence

sp short period

VX vane location along X-axis
Xcg,yeg,zeg components of center of gravity location
v output response

Notations:

E{ ) statistical expectation

()1 matrix inversion

{ )T matrix transposition

(") estimated value

a) increment or perturbation value
(M mean value

(") time derivative

METHOD OF ANALYSIS

The Monte Carlo error analysis'employed in the study is described in three steps
which, respectively, outline the formulation of the simulated data algorithm, the mod-
eling of the various instrumentation errors, and the pertinent stafistical computations.

Sirmulated Data Algorithm

The essential feature of the simulated data concept is that the parameter inaccura-
cies caused by unmodeled instrumentation errors are obtained simply as the differences
between the assumed true values of the parameters and those estimated from simulated
flight data which contain the unmodeled errors. The estimation algorithm used for this
pﬁrpose is that of reference 4, which minimizes the output response error in the least
squares sense by using a performance function of the form



3(P) = 5:‘ [Ym(®) - %(P,tﬂTR*lEfm(t) - 3@ ,0)]at
0

where Ym(t) and ?(P,t) are, respectively, the mealsured and estimated output response
vectors over a data-gathering period E:O,tf], and R~ is a weighting matrix defined
later in equation (17). Since the alporithm is implemented in discrete form for computa-
tional reasons, J{P) is approximated

N
I(P) = Z Ef‘mi - ?(P}HTR'I[Ymi - ?(P)ﬂ (1)
i=1

which represents N samples of the output error during |:t o’tf_-f' The corresponding
least squares normal equations 8J/6P = 0 are then solved for P by means of the
differential correction procedure
P]+1 = Pj + APj
1

R N a?i>T 1 a?i N a?ijr 9 .
=P+ Zl ) F )| |2 ) B (Y- B) 2

= 1=

which is also called a quasilinearization or modified Newton-Raphson minimization tech-
nigue. (See ref. 4.) The convergence criteria used for the present study was
|Af'jl = '0.011%-‘ simultaneously for each parameter.

E

The estimated output Y, required in evaluating equation (2) is modeled as
Y; = H(P)Xi + D(P)Um.l (3)

where the state vector ii is obtained by numerical integration of the aircraft dynamical
equations

ad?(%.l) = F(P)X, + G(PU_ (%O = 0) (4)



The particular forms of these equations used for the th{'ee aircraft response modes are
defined as follows: For the longitudinal motions, the forms of equations (3) and (4) are
given, respectively, as

a0 ] 1 0 0 0o ] "0 ]
Ag 0 1 0 0 0
_ IX:
CoS Qg -sin a, 0
Aa 0 0 7 v
aq
aAu | =10 0 0 1 +{ 0 {[ace] - (5)
- X Aw
oW 2u 0
Ang 0 0 7 g
. 7 Au_I 7
Ly u - oe
Ang 0 0 3 g s
Aq |10 Mg My Ma |, MﬁeJ
- - - i -
and
ag | [ o 1 0 o |[as] [ o]
A4 0 Mg My  Mgllag| Mg,
= ' + [Aée:l (6)
L AW -g sin g, Vcos o Zy Zy 1AW Z e
Au ~g cos 6, -V sin o X Xy [l Au 0 ]

where the parameter vector P to be estimated is

. T

P = [MqMWZWMrSezﬁt__e MuZuXuXW:]
and the short period approximations of equations (5) and (6) are obtained by deleting Au
and An, along with all their factors and the last four elements of the P vector. The
corresponding expressions for the lateral-directional motions are given by



ap ] [ 1 o o0 0] [0 0]
Ap 0 1 0 0 0 0
Ag
Ar 0 0 1 0 0 0
Ap Ada
Ag = 0 0 0 1 +| 0 0 (M
Ar Adr
Y Y
v 0 Yoa  Yor
Any g Yﬁ 0 ] g .
A
* * * b * *>
Ap Lﬁ I..p Lr Q 5a I"&r
: * * * * *
At NB Np Nr 0 {7Néa Nbr
and
MEr € cos o |las] [ ]
AR YB sin a -co8 g v cos 6 1A Y(.5511 Yﬁr
- * 3 % * k3
Ap Lﬁ Lp Lr 0 Ap L63 Lﬁr Ada
= + (®)
P A * %
AT N‘g N’{) Ny, 0 Ar Ny, N i|aer
Ad 0 1 tan 8, 0 Ad 0 0
- ot S s I N ad L "
where

‘ T
ok kKK * % * Lok
P= E{BL{SNBLprLrN’;YC\aLéaNéaYérL6rN61]

and is modified with respect to the derivatives bearing an asterisk to account for cross
products of inertia. (See ref. 1 and table I.) The reference trajectories for both the
longitudinal and lateral response modes are given by V, « ot and 8 . Equations (5)
to (8) also serve to indicate the individual elements of the Y, X, U, and P vectors,
as well as those of the H, D, F, and G matrices.



The remaining quantities to be determined in evaluating equation (2) are the
-
partial derivatives aYi / 8P generated by the matrix equations

oY, o%.
i i B8H(P)3 8 D(P) 9
i P o+ =p Xt p Vi ©)
and
1A ax. oxX
al®®il i oF(P) &  aG(P) s X
&|5p| " P Top K1 op Umi Xo=0i 5p =0 (10

which are, respectively, obtained by differentiating equations (3) and (4). The elements
of the 8Yi/aP and 8Xi/8P matrices are formed according to the rule for Jacobians,
whereas those for the matrices resulting from the product terms OH(P) X 8D(P) U

oP "V pp Tmi’

8F(P) 3 8G(P) -
T Xi’ and D Umi are defined by
ac..
_oC  _ ij
Up = X = Zl 5P, ()
]:

Instrumentation Error Models

The instrumentation models deseribed by the following two sets of equations define
the manner in which the error sources to be analyzed are introduced in the respective
simulations of the output response and the control input measurements.

QOutput response measurements.- The true outputs Yi’ as would be obtained in the
absence of any measurement errors, are generated by evaluating equations (3) and (4)
with the assumed true values of the parameters, initial states, and control inputs. Except
for initial state errors, which are readily simulated by choosing Xg # f(o, the first group
of error sources to be modeled are those associated with the indicated instrument outputs
YIi' These errors are all of a static nature and are related to Yi by

Yy = TY, + B, (12)

where T is a matrix of scale factors (diagonal elements), crosscoupling, and misaline-
ments, and B, represents biases for each component of Y1 For the longitudinal
motions, T is defined as '



(1 + E@) 0 0 0 0 0 0
0 (1 + eq) 0 0 0 0 0
€yx * €xcg g [fvx * fxeg
0 _( VX 7 ) (1 + EO!) 0 0 "—I(—-——'v—) 0
T=f 0 0 0 (1+ey) 0 0 0
0 0 0 0 (1+eny) Ve (fﬂ-z-fge‘"‘-—-c-g-) (13)
+ €
0 Q 0 0 Ynz (1 + EnZ) (Eax g XCg)
0 0 0 0 0 0 1+e,
| (trey) |

where the short period approximation is obtained by deleting the fourth and fifth rows and
columns (Which involve Au and Anx) so a8 to conform with the short period version of
equation (5). Similarly, for the lateral-directional motions,

_El + 6,6) 0 _(‘_E_vgc_lvi_x_c_g_) 0 0 0 0 )
0 (1 + ep) ¥ 0 0 0 0
0 Yp (1 + er) 0 0 0 0
T={ 0 0 0 (1 * E¢) 0 0 0 (14)
0 0 0 Q (1 N Eny) (Eaz ‘;Ezcg) (Eax ;chg)
0 0 0 0 0 (1 + e.) 7,
0 0 0 0 0 v, (1 ‘e ) l

The elements of T are defined in more detail in reference 1,

The next group of error sources to be simulated are those arising from the dynamic
characteristics of the output measurements, which are assumed to be adequately approxi-
mated by first-order lags. The lagged outputs ¥, are given by

a‘E‘E.(YLi) = ry-l (YIi - Ym) (YL(O) = YI(O)) (15)

10



where - 1?‘y is a diagonal matrix of measurement time constants. The complete output-
measurements model then is obtained by adding a sequence of white noise vectors W,
to get

Y iz Y+ W . . o : ‘ . (16)
in which YLi is replaced by Yli when lags are to be ignored, and the weighting matrix
R appearing in equations (1) and (2) now is defined by

. ' . ) : 1 o.: -
R6y; = E[w W, T:] | 5.. = =1 (17)
] oo #7)

where E[Wi] =0 at every sample point.
Control _input measurements.- The measurements of the input control surface posi-
tions U . usedin evaluating equations {3) and (4) are modeled in essentially the same

manner as le. By starting with the assumed true inputs ' Uy, the indicated instrument
readings UIi are represented as

Up; = T U; + By : S - (18)
which is of the same form as equation (12), except that the matrix T o is diagonal and
contains only scale factor errors. As with Y4 in equation (15), the dynamic charac-

teristics of the control input measurements are also approximated by first-order lags

Eld—t(ULi) = Tc"l(Un -Ug) (UL(0) = Uy(0)) (19)

where UL represents the lagged inputs and I‘c is a dia_goﬁdi matrix of measurement
time constants analogous fo Fy The addition of a sequence of white noise vectors W ci
similar to W, yields ' ' o

Ui = Ui * Wei ' ' Y

which completes the simulation of the confrol input measurements. R

Monte Carlo Computations

The values used for the measurement errors appearing in equations (16) and (20)
are listed in table I. These guantities are the zero-méan lo wvalues employed in ref-
erences 1 and 5 and are utilized in conjunetion with a pseudo-random number generator
to simulate sets of Ymi and Umi time histories fpr a number of Monte Carlo runs.

11



By following the simulation procedure employed in references 1 and 2, the sensor location
errors (eax’€az’€vx) and the elements of I‘Y and I, are treated as constants which
remain fixed at their tabulated 1¢ wvalues for all sets of Y,,; and Uy generated.
The elements of W and W are given new random values at each t of every set of
Ymi and U whereas the values for all of the remaining error sources are regener-
ated once for eaoh Such set so as to simulate random biases. A corresponding set of
parameter estlmates P are computed by means of equation (2), and the resulting estima-
tion errors AP=P-P are formed by subtracting the assumed true parameter values.

The means and variances of the AP from M Monte Carlo runs then are calculated from

M
5 _1 E
AP = = = A
i (21)

and

M .

E(A'fm% )= 1 Z-(Aﬁj - ﬁ)(aﬁj - Kf)T (22)

j=1
Further computations of a similar nature are made to permit evaluating the effects

of the AP on the estimates of the output response trajectories and the system open-loop
characteristic equation pole locations. Statistics of the former for each value of t are
readxly calculated from equations (21) and (22} by replacing AP with their correspondlng
Y as generated by evaluating equations (3} and (4) with the PJ The real and complex
characterlstlc equation roots have the respective forms

8 =

g = -fwx iwlyl- {’2

where the appropriate values for 1, o and £ are calculated by means of the following
equationg from reference 6. The natural frequency w and damping £ for the longitu-
dinal short period mode are given, respectively, by

-

(23)

wsp = ,/quw - VMW

. (24)
§Sp = - ————zwsp (Zw + Mq)
Similarly, for the lateral-directional motions,
L*(Y e Nt) 4L
AW Al AR A ‘ (25)

%’(NBLr ) LBNr)

12



and

N*
ST T *6* g 1 * - (28)
Lp(thr + NB) +ELg

give the spiral divergence and roll subsidence time constants, respectively, and

op =|NF

* * 1 .1
-%+Lp+Nr+"r;+?;
‘p=- 2wy

{27)

for the Dutch roll mode. As the short period roots of the longitudinal characteristic
equation become real for some of the M solutions for Af’, equations (21) and (22) are
not applied to the values of §: and scatter diagrams are used to indicate the distribution
of these quantities. '

RESULTS AND ANALYSIS

The Monte Carlo analysis of the effects of unmodeled instrumentation errors out-
lined in the introduction was based on simulated flight data, generated from the aircraft
" parameters and cruise flight conditions listed in table II and the two sets of control
input maneuvers plotted in figure 1. These choices permit examining the effects of
varying the information content of the simulated response measurements and the type of
aircraft and facilitate comparisons with similar results presented in references 1 and 2.
The effects of the unmodeled error sources were evaluated in three groups or categories,
designated as error cases, which, respectively, correspond to progressively adding '
white measurement noise (case 0), static measurement errors (case 1), and dynamic lags
and control input errors {case 2) to the simulated data. The analysis presented includes
results for both the longitudinal short period and lateral-directional response modes.
Lastly, sensitivity computations were performed to identify the dominant error soarces.

Error Analysis

In order to extend and make possible direct comparisons with the results for the
ensemble algorithm given in references 1 and 2, those for the present study also were
generated mainly for a high-performance military aireraft designated herein as aircraft F
(see table IIY by using the input maneuvers designated as sequence 1 in figures 1(a) and
1{b). The Monte Carlo computations described previously were generally based on 50 sets

13



of simulated flight data; however, satisfactory statistical results were achieved in some
cases with as few as 25 sets, The effects of the unmodeled instrumentation errors on
the estimated aircraft parameters are analyzed; then, the corresponding perturbations to
the output response trajectories and characteristic equation pole locations are discussed.

Stability and control derivatives.- The statistics of the errors in the estimated air-
craft parameters, for both the short. period and lateral response modes, are presented in
figure 2 for each of the three error cases. This information is expressed in terms of
percentage deviation from the assumed true value of each such derivative presented and
includes the mean and standard deviation for every element of the resulting AP as
determined from equations (21) and (22), For figure 2, and for all subsequent plots of a
similar nature, the mean and standard deviation of each plotted quantity are, respectively,

denoted by crosshatched and solid bars as indicated.

In generating the data plotted in flgure 2, the estimation errors were found to be
very large for the longitudinal derivatives Mu, Xu, Zu, and Xw, associated with the
phugoid, and for the lateral derivatives %5 a and %r' Further analysis indicated that
these errors, which ranged up to 20 times the assumed true values of their respective
derivatives for case 2, tend to be greatly exaggerated with respect to those derivatives
for which the response data contain insufficient information. Since the phugoid period
for aircraft F is roughly 22 times the 15-second [:to,tfj data-sampling interval used, the
results for ﬁ %u, fu, and 3.( were judged to be inaccurately determined because
of insufficient 1nformat10n and only those for the denvatwes retained in the short period
approximation are presented. The values for Y and Y 5 Were omitted for the same

reason, but these two derivatives were allowed to vary in the estimation process,

Reference to figure 2 shows that the static errors added by case 1 cause much
larger parameter inaccuracies than those due to white measurement noise alone {case 0)
and produce biases in most of the elements of AP for both response modes which are
comparable to their respective standard deviations. These biases proved to be caused
mainly by the constant errors €ar €ap? and €. {(see table 1) and not by any statistical
inaccuracy that could be attributed to the number of data sets used. Repeating the case 1
computations with these three error sources set to zero showed the biases to decrease by
a factor of 10 or more in nearly all of the derivatives for both response modes, which
essentially reduces them to a negligible level. Comparisons of the Monte Carlo results
presented in figure 2 with those obtained by using the ensemble algorithm generally indi-
cated good agreement but were limited to cases 0 and 1 since case 2 was not evaluated in
references 1 and 2. With the exception of some of the weaker derivatives, the dlfferences
amounted to only a few percent in both the mean and random components of AP The
results for case 2 show that dynamic lags and control input errors can cause much larger
inaccuracies in the estimated derivatives than the combined effects of white noise and
static errors in the response measurements,

14



The effects of initial state errors were also evaluated; however, the resulting
changes in AD proved to be very small {about equal to those for case 0) so that the
utility of estimating X would seem questionable for either case 1 or case 2. Since
the results for case 1 1mp1y that the contributions to AP from the biases in the response
measurements are small compared to those from the dynamie-lags and contral input
errors, the value of estimating the elements of B also appears doubtful. Estimating
case 2-error sources (assuming they are present in the flight data) would, therefore, seem
to offer better prospects for reducing inaccuracies in the estimated derivatives. One

w\T
aY; 9Y;
further aspect of the computations that should be mentioned is that (BP) R~ (8]?)

remained almost unchanged for all three error cases, so that the inverse of this matrix
is not indicative of the error covariance matrix E APAPT except for case 0.

Qutput response trajectories.- The effects of AP on the resulting output response
trajectoriés are illustrated by the time-history curves presented in figure 3. Plotted for
each element of the short period and lateral output vectors are the assumed true res'ponse
(based on the parameter values in table II taken from refs. 7, 8, and 9) and also the means
and standard deviations of both the measured and estimated response as calculated from
equations (21) and (22). Only the curves for case 2 are plotted since those for cases 0
and 1 exhibit almost no deviation from the true trajectories. These results show that
the perturbations to the response trajectories are not very severe however, their
importance depends on the particular applicatioh.

Reference to figure 3 indicates that the largest perturbations for both response
modes occur for the attitude angles and increase to fairly large values over the 15-second
interval plotted. The reason for this propagation was traced to the effects of the AP on
the integration of the aircraft equations of motmn Inspectlon of equation (6} for the
short period mode shows that the errors in Mq MW, and Mﬁe directly affect the
integration of Aq The resulting inaccuracy in A§ is, in turn, propagated by the inte-
gration of AB so that the effect on the pitch attitude error AB is twofold. Equation (8)
for the lateral mode indicates that the roll attitude error Aqb results from a similar

- % -~k -~ % Ak
double propagation of the errors in LB’ Lp, A Lr’ L 527 and La by the integration of
AP and A¢. The perturbations to the attitude angles AG and A¢ thus depend on
the errors in these eight derwatlves which all increase appreciably between cases 1

and 2. (See fig. 2.)

The relative positions of the ?i and Ymi time histories plotted in figure 3 fur-
_ther indicate the effects of the unmodeled instrumentation errors on the fit between the
estimated and measured response curves, which appears to be generally good except for
the attitude angles A% and &q‘) The estimated response curves (except that for Aq’))
exhibit negligible biases, but their standard deviations are larger than those for the

15 -



corresponding measured curves, This behavior of the standard deviation curves is
opposite to that observed for cases 0 and 1 (where some compensation of the measure-
ment errors 'by the algorithm is evident), and it may be due to process neoise introduced
in equations (3} and (4) by control input errors (case 2) which degrades parameter esti-
mates obtained with the modified Newton-Raphson algorithm. (See ref. 10.)

Characteristic equation pole locations.- The s-plane representation is employed
for the scatter diagrams presented in figure 4 to illustrate the effects of AP onthe
resulting characteristic equation pole locations. The plotted pole locations for both
response modes were calculated from equations {24) to (27) and include data points for
each of the M sets of 13‘ used in generating figures 2 and 3. The results for the dif-
ferent poles are denoted by plotting symbols as shown, and their assumed true locations
(based on the parameter values in table II) are indicated by arrows. As was the case
with figure 3, only the results for case 2 are presented since those for cases 0 and 1 also
showed very little departure from the true values. Although the perturbations to the
characteristic equation pole locations do not appear to be much more severe than those
for the response trajectories, their importance again should be judged by the application.

In addition to scattér, each group of estimated pole locations plotted in figure 4
exhibited biases which were largest for the short period and roll subsidence poles.
Evaluftion of equations (24), with only the mean components of the errors in M s ﬁw’
and Zw included, yielded a surprisingly accurate value for the bias in the estimate:l
short period pole locations, Further computations showed that the mean error in M
alone accounted for roughly 95 percent of the total bias. Similar evaluations of equa-
tion {(28) indicated that the mean error in i’; dominated the bias in the estimated roll-
subsidence pole location to nearly the same extent. Reference to figure 2 again showed
that the errors in those derivatives which dominated the resulting perturbations increased
appreciably between cases 1 and 2.

_Effect of Control Input Manuever

In order to determine how the results presented in figures 2, 3, and 4 might vary
for an alternate choice of control inputs, which also change the information content of
the aircraft response, corresponding data were generated by using the input maneuvers
designated as sequence 2 in figures 1(c) and 1{d). The sequence 2 inputs for both
response modes are comprised of ordinary short doublet pulses and were chosen to pro-
vide a comparison with results for maneuvers of the type often used in actual flight tests.
As evident from figure 1, these inputs differ both in form and duration from those for
sequence 1 which consist of doublets augmented with trailing step pulses,

In order to facilitate comparisons of the parameter estimation errors for the two
sets of input maneuvers, the ratio of AP for sequence 2 to that for sequence 1,

16



AP /AP is plotted in figure 5 for each of the short period and lateral derwatwes The
actual APZ percentage values can easﬂy be obtained by multiplying AP1 hy APz /API
if desired. For example, the values of APl and mPE/»AP1 for the mean error in Lp
{from figs. 2 and 5) are, respecti\iely, about 20 percent and 0.5, which give 10 percent as

the value of the mean error in Lp for sequence 2.

Except for the ratios of the mean errors in some of the lateral derivatives for
case 0 (which are inaccurately formed because of round-off errors arising from the
smallness of the numbers involved), the fact that the values for most of the Af’z /A‘f’IA
ratios plotted in figure 5 are nearly unity indicates essentially the same magnitude AP
errors for both sets of inputs. Even though the aircraft response differs substantially,
as evident from the corresponding state variable time histories also plotted in figure 1,
the increase in information content afforded by the use of sequence 1 did not result in any
appreciable decrease in AP, Thus, the information content of the response data does
not appear to be deficient for either set of input maneuvers. Although the assumed true
response trajectories for the two sets of inputs also exhibit the differences just noted,
the magnitudes and overall characteristics of the resulting perturbations are essentially
the same for each corresponding element of di’i. The two sets of characteristic
equation pole locations showed even smaller differences, which is consistent with the
fact that the parameter estimation accuracy remained almost unchanged. Because of
the limited additional information they contribute, the response trajectories and pole
location plots for sequence 2 are not presented for either response mode.

Comparisons With Results for Different Classes of Aircraft

In order to further determine how the effects of the unmodeled instrumentation
errors might vary for different aircraft, the previous computations were repeated by
using the parameters and nominal flight conditions for the large commercial transport
aircraft designated herein as aircraft T and for the light general aviation aircraft desig-
nated herein as aireraft G also listed in table II. These data include results for both the
short period and lateral response ! modes, and they were generated by using the sequence 1
input maneuvers, The ratio of AP for aircraft T and aircraft G to that for aircrait F,
that is, A%T/&PF and APG/APF, was formed in the same manner as z'.\.PZ/f_\P1 to
facilitate comparisons of the results for the three types of aircraff. The values of
AﬁT/Af’F are presented in figtires 6(a) and 6(b), and those for AJPGZ&'IBF in fig-
ures 6(c) and 6(d). Although AZ 5o Was estimated, no results for AZ,, are included
in figure 6(c) since the assumed true value for this derivative was zero for aircraft G.
(See table I1.) As with figure 5 some of the case O ratms are inaccurate; however, these
results are of minor importance as the elements of AP for each of the three aircraft
are all very small for case 0 anyway. The APT/APF ratios plotted in figures 6(a)
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and 6(b) indicate that the elements of AP for aircraft T and F are about the same for
the short period mode but are generally larger for most of the aircrait T lateral deriva-
tives (particularly the case 2 vatues for strong derivatives suchas L) and NI as
previously discussed in conjunction with fig. 3). The corresponding values of Af’G /AﬁF
presented in figures 6(c) and 6(d) exhibit even larger differences between the two sets of
parameter estimation errors for each response mode. These results indicate that the
effects of unmodeled instrumentation errors on P can vary appreciably for different
clasges of aircraft,

The perturbations to the output response trajectories for aircraft T and G also
exhibited much the same overall characteristics as those for aircraft F; and the plots
for these curves were, therefore, omitted for the same reason as those for sequence 2,
The corresponding plots for characteristic equation pole location for case 2, however,
are presented in figure 7. Comparisons of figures 4 and 7 indicate that the pole location
errors for aircraft T and G are very similar to those for aircraft ¥, except those for the
aircraft G short period poles which exhibit a much larger scatter pattern. Evaluations
of equations (24), similar to those perforrhed in conjunction with figure 4, showed the
increased scatter to be cavsed mainly by &IVIW and A%w which are much larger for
aircraft G than for either aircraft T or ¥. The effects of the errors in these derivatives
are further manifested by the fact that the short period roots of the longitudinal charac-
teristic equation become real and unequal for 5 of the 50 sets of pole locations plotted in
figure T(c).

Identification of Dominant Error Sources

The remaining objective of the present study was to identify which of the error
sources modeled in equations (168) and (20) dominate the resulting perturbations plotted
in figures 2, 3, and 4. The initial phase of this process showed that, although AP for
error case 1 is much larger than that for case 0, neither white noige nor static errors.
in Y,,; proved to have much effect on either the estimated response trajectories or
characteristic equation pole locations. These error sources thus appeared to be rela-
tively unimportant, indicating that the perturbations to ?i and § evident in figures 3
and 4 were produced mainly by the effects of the dynamic lags and control-input errors.

The addition of only dynamic lags, as given by eguations {(15) and (19), to case 1
was found to produce negligible changes in the random components of AP for both the
short period and laieral derivatives, but the magnitudes of the mean or bias components
generally increased. Results generated by including the individual elements of I and
I‘C one at a time indicated that these changes are produced principally by the 1. and
Tse lags for the short period mode and by TS and Toa for the lateral mode. Fur-
ther analysis showed that the biases in the pole locations evident in figure 4 are noticeably
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affected by these lags, whereas the corresponding Y trajectories remain essentially
unchanged. Except for the effects of static bias errors in the lateral control input meas-
urements, as discussed in the following paragraph, the resultant biases in AP (fig. 2)
and § (fig. 4) for case 2 proved to be caused mainly by the two dominant lags for each
response mode, Although the effects of dynamic lags do not appear to be very large for
the cutoff frequencies represented by the time constants listed in table I, these values

are near a threshold such that the biases they produce may increase rapidly if onboard
filtering below these frequencies is employed.

The random components of AP and A?i, and the scatter in § for case 2, thus
were traced to the static control input errors. By adding these error sources to case 1
one at a time, as was done with the lags, the elevator white noise (W‘ﬁe)i and the aile-
ron bias B 5q Were found to be the dominant static control measurement errors for the
short period and lateral modes, respectively. This procedure further indicated that the
random parts of the perturbations evident in figures 2, 3, and 4 are caused mainly by
these error sources. Ag mentioned previously, B Ba also confributes to the resultant
biases in AP, AY,, and § for the lateral mode. These biases are most noticeable in
the roll attitude trajectory (fig. 3(b}) and in the root location for the roll subsidence time
constant (fig; 4(b)). Although only results for aircraft F are discussed, the dominant
error sources were determined to be the same for all three aircraft.

CONCLUSIONS

The results from a Monte Carlo analysis of the effects of unmodeled flight
instrumentation errors on the estimation of aireraft stability and control derivatives indi-
cate the following conclusions:

1. Aircraft derivatives estimated from flight data, obtained with existing instru-
mentation, may be in error by amounts which are comparable to their respective nominal
values, The effects of these errors on the corresponding estimates of the output
response trajectories and characteristic equation pole locations do not appear to be very
severe; however, their import'ance depends on the particular application.

2. The perturbations to the estimated parameters, response trajectories, and pole
locations contributed by dynamic lags and control input errors are much larger than
those-arising from white noise and static errors in the response data combined.

3. The effects of initial state errors and output measurement biases also are
comparatively small; hence, the utility of estimating them would seem questionable par-
ticularly if the flight data contain dynamic lags or control input errors.
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4. The effects of the unmodeled instrumentation errors can be greatly exaggerated
if response data having low information content are used. The exaggeration is least for
strong or dominant derivatives and is greatest for weak or ill-conditioned ones.

5. Although some exceptions may be noted, the magnitudes of the resulting param-
eter estimation errors for the same choice of input maneuvers can vary appreciably
for different classes of aircraft with some tendency to be largest for light aircraft and
smallest for heavy transports.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., August 13, 1974.
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TABLE I.- STANDARD DEVIATIONS OF NOMINAL INSTRUMENTATION ERRORS

[Data taken from reference I, except as notecﬂ

. Biag, B, and| Scale factor | Sensor location ;| ¢.g. location ! Misalinement | Time constant a
[ Instrument Subscript noi’se, "W | ¢ €, m e, m ¥, deg T, S !
r Gyros
Pitch attitude B 0.150° 0.005 - ———- --- 0.333
Roll attitude b .500° 005 —a-- - “-- 333
Pitch rate q .100 deg/s 005 ———- - - .333
Roll rate p 100 deg/s .005 -—— - 0.60 333
Yaw rate r .100 deg/s .005 -——- - .60 333
- Accelerometers

Forward nx, axb | 0.005 ¢ 0.005 0.305 - 0.60 0.100
Normal nz, azb 005 g .005 .305 — .60 .100
Lateral ny, ay b 0005 g .005 0 S —- .100
Pitch q .100 deg/s2 005 ——— -—— -— .333
Roll b 100 deg/s2 .005 -—-- - .60 333
Yaw r 100 deg/s2 005 ——-- S .60 .333

B h

Airflow
@ -vane a, vx P 0.100° 0.005 0.305 ———- - 0.333
p-vane B 0500 .005 - - - .333
Pitot tube u 305 m .005 -— i -— 1.000
] 1
Control surface position potentiometers
Elevator 5e 0.100° 0.005 - -—— --- 0.500
Alleron ta .1009 005 -———- ---- - .500
Rudder br .100° .005 .- ——-- --- .500
Airframe center of gravity

Forward xeg | omememe---- -———- -—- 0.152 - -—
Lateral yeg o m--------- “m—- -—-- 0 --- ----
Normal zeg | ---------- -—— ~—-- 152 - ———-

4 pata from reference 5.

bSubscript applies to sensor location only.




TABLE II.- REFERENCE TRAJECTORIES AND STABILITY AND

CONTROL DERIVATIVES FOR AIRCRAFT TESTED

Quantity Aircraft F& | Aircraft TP | Aircraft G©
Reference trajectory:
V.,m/s ... ...... 252.2 251.2 54.5
ag.deg ... 2.6 0 -0.7
b, deg . . . C e e e 2.6 - 0 -0.6
Altitude, m . . . . . . . $096.0 10 058 .4 1524.0
Longitudinal:
Mg, 57l oL _ -0.7192 -0.9240 -6.7346
My, I/8-m . . ... .. -0.0338 -0.0364 -0.1664
/AT b -0.7624 -0.8060 -2.0702
My, 1/s-m . ... ... -0.0015 -0.0026 -0.0020
/-3 SV -0.0617 -0.0735 -0.3844
Xes b oo -0.0070 -0.0140 -0.0427
Xy 571 oo oL 0.0273 0.0043 0.0702
Mge, 1/82-rad . . . . . -16.2100 -4.5900 -24.3809
Zgor M/S2-rad . .. .. -21.7514 -10,5461 0
Lateral
Yg, s-1 o L. -0.1569 ~0.0868 -0.1630
Ly, s ..., ~15.9779 -4.4103 -23.2641
Np, s 2 ... 6.5630 © 2.1405 5.5036
Lo, 7l oo -1.6084 -1.1812 -11.5311
N’;,, P -0.0997 -0.0204 -1.3632
Lr,stl oL 0.3840 0.3343 2.6918
Nps'l oL -0.3432 -0.2281 -1.2138
Yoo, Ve-rad . ... L. -0.0034 0 0
Lya, 1/s2-rad. . . . .. 10.8972 2.1102 53.7865
Nia 1/s2-rad. . . . .. 0.7063 -0.0652 0.2103
Yspr L/g-Tad . . .. .. 0.0246 - 0.0222 0
LBI_, 1/s2-rad. .. ... 2.5431 " 0.5430 0.9974
N’gr‘, 1/¢2.rad. ... .. -3.9028 -1.1644 -6.1719

4 pati from reference 8.
bData from reference 7.

€ Data from reference 9.
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